Регулятор перепада давления — это регулирующая трубопроводная арматура, предназначенная для автоматического поддержания заданной разницы давлений воды, в местах отбора импульсов. Поддержание постоянного перепада давлений осуществляется изменением проходного сечения клапана регулятора. По реакции на изменение перепада регуляторы делятся на закрывающиеся и открывающиеся при увеличении перепада. Принцип работы регулятора прямого действия основан на использовании энергии воды для управления клапаном без подвода энергии от внешнего источника. Степень открытия клапана пропорциональна степени отклонения перепада от заданного значения. Наиболее широкое применение регуляторы перепада давления получили в системах отопления с динамическим гидравлическим режимом. С их помощью стабилизируют давление на вводе тепловых сетей, создают оптимальные условия для регулирующих клапанов, балансируют системы отопления и защищают оборудование от нулевого расхода путём перепуска.
Достоинства:
- Простая настройка
- Высокая точность поддержания давления
- Надёжная и ремонтопригодная конструкция
- Не требует технического обслуживания
- Не требует внешних источников питания
Недостатки:
- Высокая цена
- Сложная конструкция
- Высокие требования к качеству теплоносителя
- Диапазон настроек ограничен усилием сжатия пружины
Устройство и конструкция регулятора перепада давления
Устройство регулятора перепада давления может быть двух принципиально различных типов — это регуляторы прямого и непрямого действия. Регуляторы перепада давлений непрямого действия для изменения проходного сечения клапана используют внешний источник энергии. Измерительным элементом служат - два датчика давления, которые передают сигнал контроллеру, а контроллер вырабатывает управляющий сигнал для регулирующего клапана. Сложная конструкция и высокая цена регуляторов перепада давления непрямого действия, стали причиной их редкого применения, несмотря на высокую точность поддержания разницы давлений. Эти регуляторы могут быть собраны на базе любого регулирующего клапана, практически любого датчика давления и контроллера.
Регулятор перепада давления прямого действия — измерительный элемент воздействует на регулирующий орган без дополнительных источников энергии используя энергию рабочей среды. Это пропорциональные регуляторы, в которых открытие клапана соответствует отклонению регулируемой величины, а скорость открытия соответствует скорости изменения перепада.
Конструкция регулятора перепада давления прямого действия обязательно включает в себя: задатчик, две импульсных линии, измерительный и регулирующий элементы. В зависимости от типа регулятора измерительным элементом может быть мембрана, сильфон или поршень, а задатчиком пружина, пневматический или рычажно-грузовой механизм. Импульсная линия может быть встроена в корпус клапана или с помощью импульсной трубки врезаться в трубопровод. Клапан регулятора перепада давления может быть разгруженным по давлению или неразгруженным, одно или двухседельным, присоединяться к трубопроводу на резьбе, с помощью фланцев или патрубков для приварки.
Из множества конструкций регуляторов перепада давления для воды применяют устройства с односедельным клапаном разгруженными или неразгруженным по давлению, пружинным задатчиком и мембранным измерительным элементом. Такие устройства называют мембранными регуляторами перепада давления — они с высокой точностью поддерживают разницу давлений, надёжны в эксплуатации и ремонтопригодны, хотя отличаются несколько большей ценой по сравнению с пружинными регуляторами.
Пружинными регуляторами перепада давления называют устройства с односедельным клапаном, пружинным задатчиком, а в качестве измерительного элемента выступает затвор клапана. Цена регулятора перепада давления пружинного типа ниже, чем у аналогичного мембранного устройства, конструкция проще, а точность подержания давления меньше. Пружинными аналогами, мембранных регуляторов перепада давления открывающихся при увеличении перепада относительно настроенного значения, можно назвать только некоторые типы перепускных клапанов. У мембранных регуляторов, закрывающихся при увеличении перепада, относительно настроенного значения, пружинных аналогов - нет.
Принцип действия регулятора перепада давления
Принцип действия регулятора перепада давления с мембранным измерителем, пружинным задатчиком, односедельным клапаном и двумя внешними импульсными линиями. В конструкции регулятора перепада давления предусмотрена камера разделённая мембраной. Мембрана жёстко соединена с затвором клапана таким образом, что смещаясь в одну или другую сторону, она сместит затвор и изменит проток воды через регулятор. На мембрану через импульсные линии с одной стороны воздействует давление из подающего трубопровода (большая величина), а с другой из обратного (меньшая величина). Разница давлений уравновешивается силой сжатия пружины воздействующей на мембрану, в результате чего мембрана занимает среднее положение. Чем сильнее сжата пружина регулятора, тем больший перепад давлений он поддерживает.
Увеличение разницы между давлениями в месте присоединения импульсных трубок, относительно заданной величины — нарушает баланс в мембранной камере и усилие воды превышает усилие пружины выгибает мембрану и перемещает затвор перекрывающий поток воды. Затвор дросселирует поток воды проходящей через регулятор и перепад давлений в месте подключения импульсных трубок установится на заданном уровне.
Пропорциональными регуляторы перепада давления прямого действия называют потому, что скорость и степень открытия затвора пропорциональны скорости и степени изменения перепада давлений относительно настроенного значения.
В зависимости от конструкции, регуляторы перепада давления могут открывать или закрывать затвор при увеличении контролируемого давления.
Схемы установки регуляторов закрывающихся при увеличении перепада давления
В схемах систем отопления и охлаждения с изменяющимся расходом — на ответвлениях (стояках, горизонтальных ветвях), регуляторы перепада давления позволяют исключить влияние на ответвление колебаний гидравлического режима в системе. Предотвращают шумообразование на регулирующих клапанах при высоком дросселируемом напоре. Позволяют оптимизировать регулирование повысив 'авторитет' регулирующих клапанов.
Регуляторы перепада давления установленные перед регулирующими клапанами, позволяют исключить шумообразование возникающее из-за высокого дросселируемого напора и оптимизировать регулирование, повысив 'авторитет' регулирующего клапана. При подключении импульсных трубок до и после регулирующего клапана, регулятор перепада позволяет выставить расчётный расход и не допускает его превышения.
Схемы установки регуляторов открывающихся при увеличении перепада давления
На байпасной линии обвязки циркуляционного насоса в системах с сильно изменяющимся расходом. При снижении расхода в системе, а соответственно и через насос, напор создаваемый насосом повысится, а значит увеличивается перепад между всасывающим и напорным патрубком. Регулятор реагирует на увеличение перепада давления и открывается, перепуская теплоноситель из напорного патрубка во всасывающий, поддерживая таким образом постоянный расход через насос.
В перемычке между подающим и обратным трубопроводом в обвязке неконденсационного котла подключённого к системе с динамическим гидравлическим режимом, регулятор перепада давления необходим для создания оптимального режима работы котла. В следствии уменьшения расхода, в системе увеличивается напор создаваемый насосом, а соответственно и перепад между подающим и обратным трубопроводом котельной. Регулятор реагирует на увеличение перепада давлений и открываясь перепускает горячий теплоноситель из подающего трубопровода в обратный, обеспечивая стабильный расход через котёл независимо от колебаний в системе. Эта схема применения регулятора перепада давления повышает температуру воды на входе в котёл, снижая вероятность конденсации отходящих газов на теплообменной поверхности.
Настройка регулятора перепада давления
Настройка регулятора перепада давления выполняется после заполнения трубопровода водой во время пусконаладочных работ всего узла. В случае если точно известно давление настройки и чётко определена позиция на настроечной шкале, допускается настройка перепада до момента заполнения трубопровода водой.
Настраивается регулятор перепада, вращением регулировочного винта сжимающего пружину до момента выравнивания перепада давлений в месте отбора импульсов с заданным значением. Вращение регулировочного винта плавно изменяет давление настройки и каждому числу оборотов соответствует определённый перепад в поддерживаемом диапазоне. Проверка регулятора перепада давления выполняется путём изменения расхода воды проходящего через него. Расход воды изменяют любой регулирующей или запорной арматурой установленной на том же трубопроводе, при этом обращают внимание на скорость срабатывания и точность поддержания перепада регулятором. Допустимая погрешность калибровки пружины на граничных значениях диапазона настройки составляет 10%. Для облегчения настройки давления и контроля за работой регулятора в местах отбора импульсов необходимо установить манометры.
Технические характеристики регуляторов перепада давления
DN регулятора давления — номинальный диаметр отверстия в присоединительных патрубках. Значение DN применяется для унификации типоразмеров трубопроводной арматуры. Фактический диаметр отверстия может незначительно отличаться от номинального в большую или меньшую сторону. Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр Ду регуляторов давления. Ряд условных проходов DN трубопроводной арматуры регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)».
PN регулятора давления — номинальное давление - наибольшее избыточное давление рабочей среды с температурой 20°C, при котором обеспечивается длительная и безопасная эксплуатация. Альтернативным обозначением номинального давления PN, распространённым в странах постсоветского пространства, было условное давление Ру регуляторов давления. Ряд номинальных давлений PN трубопроводной арматуры регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».
Kvs регулятора давления — коэффициент пропускной способности соответствует расходу воды, м³/ч с температурой в 20°C, при котором потери напора на клапане регулятора составят 1 бар. Значение коэффициента пропускной способности используется в гидравлических расчётах для определения потерь напора.
Диапазон настройки — диапазон давлений поддерживаемых регулятором, зависит от упругости пружины (усилия задатчика).
Методика расчёта
Расчёт регулятора перепада давления заключается в определении пропускной способности, требуемого диапазона настройки, проверке на возникновения шума и кавитации.
Зависимость потерь напора от расхода через регулятор перепада давления называется пропускной способностью - Kvs. Kvs - пропускная способность численно равная расходу в м³/ч, через полностью открытый затвор регулятора перепада, при котором потери напора на нём равны 1бар.
Kv – то же, при частичном открытии затвора регулятора.
Зная, что при изменении расхода в «n» раз потери напора на регуляторе изменяются в «n» в квадрате раз не сложно определить требуемый Kv регулятора перепада давления подставив в уравнение расчётный расход и избыток напора.
Некоторые производители рекомендуют выбирать регулятор перепада давления с ближайшим большим значением Kvs от полученного значения Kv. Такой подход выбора позволяет с большей точностью регулировать расходы ниже заданного при расчёте, но не даёт возможности увеличить расход выше заданного значения, которое довольно часто приходится превышать. Мы не критикуем вышеописанный метод, но рекомендуем подбирать регуляторы перепада давления таким образом, чтобы требуемое значение пропускной способности находилось в диапазоне от 40 до 70% хода штока. Регулятор перепада давления, рассчитанный таким образом, сможет с достаточной точностью как уменьшить расход относительно заданного, так и несколько увеличить его. Выше приведенный алгоритм расчёта выводит список регуляторов перепада давления, для которых требуемое значение Kv попадает в диапазон хода штока от 40 до 70%. В результатах подбора приведен процент открытия затвора регулятора перепада давления, при котором дросселируется заданный избыток напора на заданном расходе.
Подбор диапазона настройки
Диапазон настройки регулятора перепада давления зависит от силы сжатия пружины. Некоторые регуляторы перепада серийно комплектуются одной пружиной и имеют всего лишь один диапазон настройки по перепаду давлений, а некоторые могут быть укомплектованы пружинами различной жёсткости и иметь несколько диапазонов настройки. Перепад давлений который будет поддерживать регулятор, должен находиться, примерно, в средней трети диапазона регулирования.
Выше приведенный алгоритм подбора регуляторов перепада выводит список регуляторов у которых заданный перепад попадет в диапазон от 20 до 80% диапазона поддерживаемых перепадов давлений.
Расчёт регулятора на возникновение кавитации
Кавитация – образование пузырьков пара в потоке воды проявляющееся при снижении давления в нём ниже давления насыщения водяного пара. Уравнением Бернулли описан эффект увеличения скорости потока и снижения давления в нём, возникающий при сужении проходного сечения. Проходное сечение между затвором и седлом регулятора перепада давления является тем самым сужением, давление в котором может опуститься до давления насыщения, и местом наиболее вероятного образования кавитации. Пузырьки пара нестабильны, они резко появляются и также резко схлопываются, это приводит к выеданию частиц метала из затвора регулятора, что неизбежно станет причиной его преждевременного износа. Кроме износа кавитация приводит к повышению шума при работе регулятора.
Основные факторы, влияющие на возникновение кавитации:
- Температура воды – чем она выше, тем большие вероятность возникновения кавитации.
- Давление воды – перед регулятором перепада, чем оно выше, тем меньше вероятность возникновения кавитации.
- Дросселируемое давление – чем оно выше, тем выше вероятность возникновения кавитации.
Кавитационная характеристика регулятора – определяется особенностями дросселирующего элемента регулятора. Коэффициент кавитации различен для различных типов регуляторов давления и должен указываться в их технических характеристиках, но так, как большинство производителей не указывают данную величину, в алгоритм расчёта заложен диапазон наиболее вероятных коэффициентов кавитации.
В результате проверки на кавитацию может быть выдан следующий результат:
- «Нет» - кавитации точно не будет.
- «Возможна» – на клапанах некоторых конструкций возникновение кавитации возможно, рекомендуется изменить один из вышеописанных факторов влияния.
- «Есть» – кавитация точно будет, измените один из факторов влияющих на возникновение кавитации.
Расчёт на возникновение шума
Высокая скорость потока во входном патрубке регулятора перепада давления может стать причиной высокого уровня шума. Для большинства помещений в которых устанавливаются регуляторы перепада, допустимый уровень шума составляет 35-40 dB(A), он соответствует скорости во входном патрубке клапана примерно 3м/c. Поэтому, при подборе регулятора перепада давления рекомендуется не превышать выше указанной скорости.
Установка и монтаж регулятора перепада давления
Установку регулятора перепада давления следует производить в соответствии с инструкцией по монтажу, кроме того необходимо учесть ниже приведенные рекомендации:
- До и после регулятора должны быть установлены манометры.
- Перед регулятором перепада, по ходу движения воды, должен быть установлен сетчатый фильтр.
- Для установки регулятора на трубопровод транспортирующий воду с высокой температурой, может потребоваться охладитель импульсов и охладитель штока.
- Различные производители представляют различные данные, но в среднем при монтаже регулятора перепада давления, рекомендуется выдержать прямые участки 5DN перед и 10DN после него.
- Для большинства регуляторов перепада давлений монтажное положение при температурах более 80°С горизонтальное мембранным приводом вниз, при температурах менее 80°С – произвольное.
Обслуживание и ремонт регуляторов перепада давления
Обслуживание регулятора перепада давления следует выполнять в соответствии с инструкцией по эксплуатации, кроме того необходимо учесть:
- С периодичностью раз в месяц рекомендуется проверить настройку, скорость срабатывания и точность поддержания перепада регулятором. Проверяют работу регулятора перепада давления, изменяя расход воды проходящей через него – плавно закрывая арматуру, установленную на том же трубопроводе, при этом следят за отклонением перепада в месте отбора импульса.
- С периодичностью раз в пол года, следует прочистить линии отбора импульсов. Для этого участок, на котором установлен регулятор перепада - следует отключить, дренировать, а импульсные линии продуть, предварительно отсоединив от регулятора и трубопровода.
- Сетчатый фильтр, установленный перед регулятором перепада давления, очищают по мере загрязнения. Засорённость фильтра определяют по показаниям манометров предусмотренных до и после него.
Ремонт регулятора перепада давления воды может потребоваться, в том случае, если во время работы или обслуживания было выявлено отклонение перепада давления в месте отбора импульсов от настроенного значения.
Причиной отклонения перепада может быть:
- Засорение импульсной трубки — устраняется продувкой;
- Разрыв мембраны — необходима замена оригинальной мембраной;
- Засорение затвора клапана — устраняется чисткой затвора и седла после демонтажа регулятора давления.
Требования норм, касающиеся регуляторов перепада давления
Ниже собраны требования норм и правил касающиеся подбора, монтажа и эксплуатации регуляторов перепада давления. Приведенный перечень нормативных требований не является исчерпывающим, и со временем будет расширяться. Выдержки взяты из нормативных документов регулирующих порядок проектирования, монтажа и эксплуатации инженерных систем жилых, общественных и административно бытовых зданий. В разделе не приведены требования норм и правил которые относятся к регуляторам перепада давления применяемым в промышленности и технологических установках.
ДБН В.2.5-39 Тепловые сети
Пункт 10.18 — Глава 10 Гидравлический режим
При определении напора сетевых насосов перепад давления на вводе двухтрубных водяных тепловых сетей в здание следует принимать равным расчётным потерям давления на вводе в тепловой пункт и местной системе с коэффициентом 1,5 но не менее 0,2МПа.
Рекомендуется избыточное давление снижать в тепловых пунктах.
Пункт 12.12 — Глава 12 Конструкции трубопроводов
Для тепловых сетей, как правило, используют арматуру с концами под приварку или фланцевую.
Муфтовую арматуру допускается использовать с условным проходом Dу<100мм с давлением 1,6МПа и ниже, и температурой 115°C и ниже для случаев использования водо-газопроводных труб.
Пункт 16.7.3 — Раздел 16.7 Схемы присоединения потребителей к тепловой сети — Глава 16 Тепловые пункты
Ограничительное устройство (лимитную дроссельную диафрагму) допускается не устанавливать на абонентском вводе, если ввод оснащён регулятором перепада давления (расхода) и избыточный напор не превышает 50-80кПа, а ограничение расхода достигнуто за счёт соответствующей настройки автоматически поддерживаемого перепада давления на максимально открытом автоматическом регуляторе теплового потока (температуры).
Пункт 16.7.6 — Раздел 16.7 Схемы присоединения потребителей к тепловой сети — Глава 16 Тепловые пункты
Защиту насосной группы теплового пункта от воздействия переменного гидравлического режима системы отопления следует осуществлять путём автоматического перепуска теплоносителя после насоса или использованием автоматически регулируемых циркуляционных насосов.
Пункт 17.13 — Глава 17 Электроснабжение и система управления
Автоматизация теплового пункта должна обеспечивать:
- регулирование расхода тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
- заданную температуру воды в системе горячего водоснабжения;
- поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
- заданное давление в обратном трубопроводе или необходимый перепад давлений воды в подающем и обратном трубопроводах тепловых сетей;
- защиту систем теплопотребления от повышенного давления и температуры воды в случаях появления опасности превышения допустимых граничных параметров;
- включение резервного насоса при отключении рабочего;
- прекращение подачи воды в бак-аккумулятор при достижении верхнего уровня воды в баке и разбора воды из бака при достижении нижнего уровня;
- другие мероприятия повышающие эффективность работы оборудования.
СНиП 2.04.05 Отопление вентиляция и кондиционирование
Пункт 3.59 — Глава 3 Отопление
Регулирующую арматуру на подводках к отопительным приборам следует устанавливать в соответствии с п.3.14.
На стояках систем отопления, оборудованных индивидуальными автоматическими терморегуляторами, следует устанавливать автоматические балансировочные клапаны для двухтрубных систем отопления и клапаны-ограничители расхода для однотрубных систем, а в тепловых пунктах или в местных котельных - автоматические перепускные клапаны.
ГОСТ 11881-76 Регуляторы работающие без использования постороннего источника энергии. Общие технические условия
ГОСТ 12678-80 Регуляторы давления прямого действия. Основные параметры
ГОСТ 12.2.063-81 Общие требования безопасности. Арматура промышленная трубопроводная
ГОСТ 12893-83 Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия
ГОСТ 23866-87 Клапаны регулирующие односедельные, двухседельные и клеточные. Основные параметры
ГОСТ 24856-81 (ISO 6552-80) Арматура трубопроводная промышленная. Термины и определения
ГОСТ 4666-75 Маркировка и отличительная окраска. Арматура трубопроводная
Благодарность за предоставленные материалы:
http://www.ktto.com.ua